Cube-square identities

> restart;

Odd squares first

> # see ?polynomial for Maple's use of 'quo' and 'rem' with polynomials

> expand(((27*x^2 + 27*x + 7 - 1)/3)^3);

729*x^6+2187*x^5+2673*x^4+1701*x^3+594*x^2+108*x+8

Now, this was a bit odd, to say the least:

> quo(729*x^6+2187*x^5+2673*x^4+1701*x^3+594*x^2+108*x+8,
27*x^2+27*x+7, x, 'R0');

27*x^4+54*x^3+38*x^2+11*x+31/27

> R0;

-1/27

> floor(31/27);

1

I had to resort to this to get the odd square identity :

> (729*x^6+2187*x^5+2673*x^4+1701*x^3+594*x^2+108*x+8)
- expand((27*x^2+27*x+7)*(27*x^4+54*x^3+38*x^2+11*x+1));

4*x^2+4*x+1

> factor(4*x^2+4*x+1);

(2*x+1)^2

A look at the quotient quartic:

> factor(27*x^4+54*x^3+38*x^2+11*x+1);

27*x^4+54*x^3+38*x^2+11*x+1

Thus one has the following identity :

((27*x^2+27*x+7-1)/3)^3 = (27*x^2+27*x+7)*(27*x^4+5...

Now the even squares ( seven cases)

(0) The zero-th of the seven even-square producing quadratics:

> expand(((108*x^2 + 1 - 1)/3)^3);

46656*x^6

> quo(46656*x^6, 108*x^2+1, x, 'r0');

432*x^4-4*x^2+1/27

> r0;

-1/27

I had to resort to this to get the zero-th of the even square identities :

> (46656*x^6) - expand((108*x^2+1)*(432*x^4-4*x^2));

4*x^2

That, of course, is identically (2*x)^2 .

Thus one has the following identity :

((108*x^2+1-1)/3)^3 = (108*x^2+1)*(432*x^4-4*x^2)+(...

(1) The i = 1 case of the seven even-square producing quadratics:

> expand(((756*x^2+648*x+139 - 1)/3)^3);

16003008*x^6+41150592*x^5+44035488*x^4+25100928*x^3...

> quo(16003008*x^6+41150592*x^5+44035488*x^4+25100928*x^3+8038224*x^2
+1371168*x+97336, 756*x^2+648*x+139, x, 'r1');

21168*x^4+36288*x^3+23252*x^2+6600*x+18907/27

> 16003008*x^6+41150592*x^5+44035488*x^4+25100928*x^3
+8038224*x^2+1371168*x+97336 - expand((756*x^2+648*x+139)*
(21168*x^4+36288*x^3+23252*x^2+6600*x+700));

196*x^2+168*x+36

where the constant term '700' is obtained from the 'r1' quotient constant term:

> floor(18907/27);

700

> factor(196*x^2+168*x+36);

4*(7*x+3)^2

is, in fact, (14*x+6)^2 . Thus one has the following identity :

((756*x^2+648*x+139-1)/3)^3 =

(756*x^2+648*x+139)*(21168*x^4+36288*x^3+23252*x^2+...

A look at the quotient quartic:

> factor(21168*x^4+36288*x^3+23252*x^2+6600*x+700);

4*(14*x+5)*(2*x+1)*(189*x^2+162*x+35)

That quadratic has discriminant:

> 162^2 - 4*189*35;

-216

is -6^3 . Interesting...

(2) The i = 2 case of the seven even-square producing quadratics:

> expand(((756*x^2+864*x+247 - 1)/3)^3);

16003008*x^6+54867456*x^5+78327648*x^4+59595264*x^3...

> quo(16003008*x^6+54867456*x^5+78327648*x^4+59595264*x^3+25487568*x^2+
5809536*x+551368, 756*x^2+864*x+247, x, 'r2');

21168*x^4+48384*x^3+41396*x^2+15712*x+60271/27

> 16003008*x^6+54867456*x^5+78327648*x^4+59595264*x^3+25487568*x^2+
5809536*x+551368 - expand((756*x^2+864*x+247)*
(21168*x^4+48384*x^3+41396*x^2+15712*x+2232));

196*x^2+224*x+64

where the constant term '2232' is obtained from the 'r2' quotient constant term:

> floor(60271/27);

2232

> factor(196*x^2+224*x+64);

4*(7*x+4)^2

is, in fact, ... (14*x+8)^2 . Thus one has the following identity :

((756*x^2+864*x+247-1)/3)^3 =

(756*x^2+864*x+247)*(21168*x^4+48384*x^3+41396*x^2+...

A look at the quotient quartic:

> factor(21168*x^4+48384*x^3+41396*x^2+15712*x+2232);

4*(2*x+1)*(14*x+9)*(189*x^2+216*x+62)

That quadratic has discriminant:

> 216^2 - 4*189*62;

-216

is also -6^3 ...

(3) The i = 3 case of the seven even-square producing quadratics:

> expand(((1404*x^2+864*x+133 - 1)/3)^3);

102503232*x^6+189236736*x^5+145364544*x^4+59470848*...

> quo(102503232*x^6+189236736*x^5+145364544*x^4+59470848*x^3+13666752*x^2
+1672704*x+85184, 1404*x^2+864*x+133, x, 'r3');

73008*x^4+89856*x^3+41324*x^2+8416*x+17293/27

> 102503232*x^6+189236736*x^5+145364544*x^4+59470848*x^3+13666752*x^2
+1672704*x+85184 - expand((1404*x^2+864*x+133)*
(73008*x^4+89856*x^3+41324*x^2+8416*x+640));

676*x^2+416*x+64

where the constant term '640' is obtained from the 'r3' quotient constant term

> floor(17293/27);

640

> factor(676*x^2+416*x+64);

4*(13*x+4)^2

is, in fact, ... (26*x+8)^2 . Thus one has the following identity :

((1404*x^2+864*x+133-1)/3)^3 =

(1404*x^2+864*x+133)*(73008*x^4+89856*x^3+41324*x^2...

A look at the quotient quartic:

> factor(73008*x^4+89856*x^3+41324*x^2+8416*x+640);

4*(351*x^2+216*x+32)*(52*x^2+32*x+5)

Ah! Interesting! Two quadratics. That's novel...

The first dfiscriminant:

> 216^2 - 4*351*32;

1728

Oh! That's 12^3 ...

And the other one:

> 32^2 - 4*52*5;

-16

Oh! That's -2^4 ...

(4) The i = 4 case of the seven even-square producing quadratics:

> expand(((1404*x^2+1944*x+673 - 1)/3)^3);

102503232*x^6+425782656*x^5+736729344*x^4+679684608...

> quo(102503232*x^6+425782656*x^5+736729344*x^4+679684608*x^3+352622592*x^2
+97542144*x+11239424, 1404*x^2+1944*x+673, x, 'r4');

73008*x^4+202176*x^3+209804*x^2+96696*x+450913/27

> 102503232*x^6+425782656*x^5+736729344*x^4+679684608*x^3+352622592*x^2
+97542144*x+11239424 - expand((1404*x^2+1944*x+673)*
(73008*x^4+202176*x^3+209804*x^2+96696*x+16700));

676*x^2+936*x+324

where the constant term '2232' is obtained from the 'r4' quotient constant term:

> floor(450913/27);

16700

> factor(676*x^2+936*x+324);

4*(13*x+9)^2

is, in fact, ... (26*x+18)^2 . Thus one has the following identity :

((1404*x^2+1944*x+673-1)/3)^3 =

(1404*x^2+1944*x+673)*(73008*x^4+202176*x^3+209804*...

A look at the quotient quartic:

> factor(73008*x^4+202176*x^3+209804*x^2+96696*x+16700);

4*(52*x^2+72*x+25)*(351*x^2+486*x+167)

Again, two more quadratics...

The first discriminant:

> 486^2 - 4*351*167;

1728

is again 12^2 ,

while the other one is:

> 72^2 - 4*52*25;

-16

is once again -2^4 ...

(5) The i = 5 case of the seven even-square producing quadratics:

> expand(((2052*x^2+864*x+91 - 1)/3)^3);

320013504*x^6+404227584*x^5+212308128*x^4+59346432*...

> quo(320013504*x^6+404227584*x^5+212308128*x^4+59346432*x^3+9311760*x^2
+777600*x+27000, 2052*x^2+864*x+91, x, 'r5');

155952*x^4+131328*x^3+41252*x^2+5728*x+8011/27

> 320013504*x^6+404227584*x^5+212308128*x^4+59346432*x^3+9311760*x^2
+777600*x+27000 - expand((2052*x^2+864*x+91)*
(155952*x^4+131328*x^3+41252*x^2+5728*x+296));

1444*x^2+608*x+64

where the constant term '2232' is obtained from the 'r4' quotient constant term:

> floor(8011/27);

296

> factor(1444*x^2+608*x+64);

4*(19*x+4)^2

is, in fact, ... (38*x+8)^2 . Thus one has the following identity :

((2052*x^2+864*x+91-1)/3)^3 =

(2052*x^2+864*x+91)*(155952*x^4+131328*x^3+41252*x^...

A look at the quotient quartic:

> factor(155952*x^4+131328*x^3+41252*x^2+5728*x+296);

155952*x^4+131328*x^3+41252*x^2+5728*x+296

Ah! It's irreducible...

(6) The i = 6 case of the seven even-square producing quadratics:

> expand(((2052*x^2+3240*x+1279 - 1)/3)^3);

320013504*x^6+1515853440*x^5+2991372768*x^4+3147880...

> quo(320013504*x^6+1515853440*x^5+2991372768*x^4+3147880320*x^3
+1863047952*x^2+587982240*x+77308776, 2052*x^2+3240*x+1279, x, 'r6');

155952*x^4+492480*x^3+582980*x^2+306600*x+1632007/2...

> 320013504*x^6+1515853440*x^5+2991372768*x^4+3147880320*x^3
+1863047952*x^2+587982240*x+77308776 - expand((2052*x^2+3240*x+1279)*
(155952*x^4+492480*x^3+582980*x^2+306600*x+60444));

1444*x^2+2280*x+900

where the constant term '2232' is obtained from the 'r4' quotient constant term:

> floor(1632007/27);

60444

> factor(1444*x^2+2280*x+900);

4*(19*x+15)^2

is, in fact, ... (38*x+30)^2 . Thus one has the following identity :

((2052*x^2+3240*x+1279-1)/3)^3 =

(2052*x^2+3240*x+1279)*(155952*x^4+492480*x^3+58298...


A look at the quotient quartic:

> factor(155952*x^4+492480*x^3+582980*x^2+306600*x+60444);

155952*x^4+492480*x^3+582980*x^2+306600*x+60444

Again, also irreducible...

The values of the even squares

> restart;

> poly0 := R -> 108*R^2 + 1; # r = 2*R in 1+27*r^2

poly0 := proc (R) options operator, arrow; 108*R^2+...

(1) Here r is defined by r = 2W = 14R + 6 or 8

> i := 1:
poly||i := R -> expand((1+27*(14*R+6)^2)/7): # r=14*R+6
sort(poly||i(R));

756*R^2+648*R+139

> i := 2:
poly||i := R -> expand((1+27*(14*R+8)^2)/7): # r=14*R+8
sort(poly||i(R));

756*R^2+864*R+247

>

(2) Here r is defined by r = 2W = 26R + 8 or 18

> i := 3: poly||i := R -> expand((1+27*(26*R+8)^2)/13): # r=26*R+8
sort(poly||i(R));

1404*R^2+864*R+133

> i := 4: poly||i := R -> expand((1+27*(26*R+18)^2)/13): # r=26*R+18
sort(poly||i(R));

1404*R^2+1944*R+673

(3) Here r is defined by r = 2W = 38R + 8 or 30

> i := 5: poly||i := R -> expand((1+27*(38*R+8)^2)/19): # r=38*R+8
sort(poly||i(R));

2052*R^2+864*R+91

> i := 6: poly||i := R -> expand((1+27*(38*R+30)^2)/19): # r = 38*R+30
sort(poly||i(R));

2052*R^2+3240*R+1279

>

> for i from 0 to 6 do [i, poly||i(R)] od;

[0, 108*R^2+1]

[1, 756*R^2+648*R+139]

[2, 756*R^2+864*R+247]

[3, 1404*R^2+864*R+133]

[4, 1404*R^2+1944*R+673]

[5, 2052*R^2+864*R+91]

[6, 2052*R^2+3240*R+1279]

> i := 0: poly||i(x);
for R from 0 to 10 do sqrt(((poly||i(R)-1)/3)^3 mod poly||i(R)) od;

108*x^2+1

0

2

4

6

8

10

12

14

16

18

20

> i := 1: sort(poly||i(x));
for R from 0 to 10 do sqrt(((poly||i(R)-1)/3)^3 mod poly||i(R)) od;

756*x^2+648*x+139

6

20

34

48

62

76

90

104

118

132

146

> i := 2: sort(poly||i(x));
for R from 0 to 10 do sqrt(((poly||i(R)-1)/3)^3 mod poly||i(R)) od;

756*x^2+864*x+247

8

22

36

50

64

78

92

106

120

134

148

> i := 3: sort(poly||i(x));
for R from 0 to 10 do sqrt(((poly||i(R)-1)/3)^3 mod poly||i(R)) od;

1404*x^2+864*x+133

8

34

60

86

112

138

164

190

216

242

268

> i := 4: sort(poly||i(x));
for R from 0 to 10 do sqrt(((poly||i(R)-1)/3)^3 mod poly||i(R)) od;

1404*x^2+1944*x+673

18

44

70

96

122

148

174

200

226

252

278

> i := 5: sort(poly||i(x));
for R from 0 to 10 do sqrt(((poly||i(R)-1)/3)^3 mod poly||i(R)) od;

2052*x^2+864*x+91

8

46

84

122

160

198

236

274

312

350

388

> i := 6: sort(poly||i(x));
for R from 0 to 10 do sqrt(((poly||i(R)-1)/3)^3 mod poly||i(R)) od;

2052*x^2+3240*x+1279

30

68

106

144

182

220

258

296

334

372

410

>